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Abstract. In  this paper we study the overlap distribution for a non-random two-dimensional 
frustrated Ising model a t  low temperatures ( the P U D  model) .  We show rigorously that i t  
is a delta distribution. More generallg, for any such model that  can be reduced to a 
one-dimensional one, the o t e r l ap  has necessarily a delta distribution. 

1. Introduction 

The two basic ingredients of spin glasses are thought to be frustration and randomness. 
Since the presence of randomness makes the problem very hard, one investigates the 
concept of frustration on its own [l] .  In particular, one looks for which kind of 
long-range order occurs in deterministic strongly frustrated models [2, 31. Looking at 
various frustrated Ising models with periodic interactions in two dimensions, AndrC 
et a1 [3] found that the long-range order in these systems is always periodic, ferro- 
magnetic or antiferromagnetic and never of the spin-glass type. During the last few 
years, it has been argued that the overlap distribution function P( q )  is a good candidate 
for a spin-glass order parameter [4]: 

where 

Here a runs over the extrema1 equilibrium states or pure phases and pa is the weight 
of the pure phase (.)ck, e.g. in the Gibbs state ( . ) ,  i.e. ( . ) = E c c  p , ( . ) , .  A non-trivial 
P ( q )  has been given by Parisi for the replica symmetry breaking solution of the S K  

model [5-71. (See also the review on spin glasses [8].) Numerical work on a fully 
frustrated three-dimensional system of classical vector spins revealed, however, that, 
despite the fact that the long-range order is periodic, the overlap can nevertheless have 
a non-trivial distribution as expected for real spin glasses [9]. Unfortunately, for a 
rigorous calculation of P(q) a quite detailed knowledge of the extrema1 states is needed, 
together with a natural notion of their weights. This has led us to the piled-up dominos 
( P U D )  model as described in Fi 2. We repeat a heuristic argument given in [3] to show 
that this model for sufficiently low temperatures can be reduced to a one-dimensional 
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problem, the latter being much simpler. Due to the frustration in this model there are 
infinitely many ground-state configurations. They represent the extrema1 phases 
labelled by a in (1) and the measure p m  can be defined as their weights in the unique 
state obtained as the zero-temperature limit of the unique translation-invariant finite- 
temperature equilibrium state. It is interesting to study also the case where the weights 
are determined by the finite-temperature equilibrium states. The temperature then 
indicates the interaction-strength dependence. 

The main result is that Pr( q )  is a Dirac measure concentrated at a non-zero overlap 
Q ( T )  slowly varying with T. This result confirms the idea that non-random Ising 
models with frustration d o  not exhibit long-range spin-glass order. However, we cannot 
conclude that this is caused by the deterministic character of the interaction. It is 
essential that the several phases, which exist strictly speaking only at T = 0 ,  are not 
different overall. Reasons for that may be that the interaction is too short ranged or 
that the lattice dimension is too low or  that the one-site configuration space is too 
small. From our treatment it is clear that, for any model which reduces under specific 
conditions to a one-dimensional spin model with periodic finite-range interaction, P(  q )  
will have a Dirac distribution. 

2. The model 

The local Hamiltonians for the PUD model are as follows, for given coupling constants 
J ,  K > 0 and  N, M in N: 

N-1  h' - 1 

j eben I odd 

where x takes values in {-1, l}", the configuration space of a two-dimensional Ising 
model. The arrangement of ferromagnetic bonds with coupling constants - J  and 
antiferromagnetic bonds with coupling constants K is visualised in figure 1. We restrict 

K J K 

K J K 

Figure 1. Coupling constants in the P U D  model 
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our attention to the case where K >>J.  One may expect that the antiferromagnetic 
chains are frozen into one of their two ground-state configurations at sufficiently low 
temperatures. In  almost all ground states of the two-dimensional system, these chains 
will be ordered in phase as shown in figure 2 .  Indeed, following the entropy argument 
of [3], one has to compare the two possible situations for a ferromagnetic chain between 
two antiferromagnetic ones. When the latter are out of phase, one has only a ferro- 
magnetic chain with two possible ground states while, in the other case, the intermediate 
chain feels a staggered field of strength 2J. This causes an infinite degeneracy of the 
ground state. 

J J 

Figure 2. P U I ~  model with K >> J at very low temperarures 

It is clear that the vertical chains with free spins are completely decoupled near 
T=O. What remains to be studied is the type of ordering in such a chain. We recall 
that the foregoing arguments are heuristic and  that we d o  not prove that the limits 
K + cc and T + 0 commute. The resulting one-dimensional model, however, can be 
treated exactly. The effective Hamiltonian is given by 

where x now takes values in { - 1 ,  l}". It is convenient to transform this model into a 
translation-invariant and spin-flip-symmetric one. Therefore we define new variables 
Y ,  by 

( - l ) c f  2 l T [ l l f l i  21 Y,Y,+l = x, 

where [ z ]  denotes the largest integer smaller than z. If  we absorb the factor 2J  in the 
inverse temperature, the transformed Hamiltonian is 

This Hamiltonian can be generalised to a set of models with interaction of range n, 
all of them having a non-zero residual entropy [ 10, 111 and hence a highly degenerate 
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ground state. In the new variables, the overlap between two configurations y and y ‘  
is given by 

whenever this limit exists. We remark that one can construct pairs of ground-state 
configurations for which this limit does not exist, but they are rather rare. Assuming 
that the equilibrium state wp for the model with local Hamiltonians (3)  is translation 
invariant and  has local densities wp”, the local overlap distribution is defined by 

N I  
P,y (q )  = c ,c  , S ( q  - q,, ,  h p  ( Y o , .  . . I rN)W;(Yb,.  . . ,  Y k J ) .  

10. , L \  1 0  . \ \  

This definition includes the case /3 = CO by taking for w, the zero-temperature limit of 
the equilibrium state w p .  We will show that lim,,+x P:(q)  exists as a weak limit of 
measures and  tends to a Dirac distribution at Q ( P )  and we will compute the value of 
Q ( p ) .  For this purpose we need an explicit expression for the wp”. Their quasiproduct 
structure is well known [ 121 and the appropriate transfer-matrix technique allows us 
to compute the wp” in a straightforward manner [13]. We will generalise (2) to 

with A and B any pair of observables. In this way we treat a much larger class of 
models, including the PUD model. The calculation will not depend on the specific 
form of A or  B. 

3. The transfer matrix and the overlap distribution 

The most typical feature of one-dimensional classical models is that their equilibrium 
states are completely determined by the n-point correlation functions where n is the 
range of the interaction [12, 131. This can be explained as follows. The equilibrium 
condition requires that the free energy, i.e. internal energy minus entropy, should be 
minimal. Now the entropy measures the degree of randomness in the state and  this 
will be as large as possible if the direct correlations between the particles are as short 
as possible. On the other hand, since the interaction is of range n, these correlations 
extend at least over n points. For one-dimensional models it can be proved that the 
range of correlation is exactly n [13] and  the full state (i.e. all densities) can be 
reconstructed as the unique so-called quasiproduct state with given n-point density. 

For the reduced P U D  model, this is done as follows. Let pp denote the three-point 
function and pb(x,, x1) =E,? pp(x , , ,  xI, x,) the two-point function, then the N-point 
densities have the following form: 

Because of this structure, these states are called quasiproduct states. The free-energy 
density of such a state is given by 
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where h ( x , , ,  xl, x2) = -.x,,xi +:xox2. Considered as a functional of p,, this expression 
attains its minimum at 

p p ( ~ o ~ . ~ l , ~ 2 ~ = A ~ i ~ P ~ ~ , l , ~ l ~ ~ , p ( ~ i , x ~ ~ ~ ~ p ~ - p ~ ( x o , ~ ~ l , x 2 ~ l  

where 4, and t,bLp are positive eigenvectors of the transfer matrices L, and Lp*, 
respectively, corresponding to their largest eigenvalue A, and normalised such that 
E.,,,,, dp(x,, xl)$,(xo, xl) = 1. The transfer matrix L, acts on functions 4 :  
as follows: 

( L , ~ ) ( X ~ ,  x2) =Cexp[-ph(.x,, x , ,  x2)14(xo ,x l ) .  
To 

It turns out that A, is non-degenerate for any bounded Hamiltonian h 
the equilibrium state is unique. 

Denoting k p ( x g ,  xi ,  x2) = Aj'exp[-ph(x,, x , ,  x?)], the characteristic 
P:(q) can be written as 

{-1, l j 2 + C  

[13]. Hence 

function of 

where To ( k )  is an operator acting on functions g: { - 1, l}" + C as 

( T p ( k ) g ) ( x n ,  Y O ,  x I r  ~ 1 )  = c exp[ikA(x,, . . . x , ) B ( y , .  . .m)l  
\ 2 , L .  

X k p  (xo, xi1 x2) k p  ( y o ,  J I  3 J32)g(xi , Y I  9 x2 3 YZ) 

and 5,(xO,yo, x,,  y , )  = $,(x0, y l ) .  We have to find the limb+= P,h'(q), but 
it is a standard result in probability theory that a sequence of probability measures 
converges properly to a limiting probability measure if the corresponding sequence of 
characteristic functions converges pointwise to a function which is continuous at the 
origin. Furthermore, the limiting function is the characteristic function of the limiting 
probability measure [ 141. 

All this holds for finite p. It is clear, however, that the zero-temperature limit of 
the equilibrium state is still a quasiproduct state. Moreover, it can be characterised 
by a (renormalised) transfer matrix L in the same way as the finite-temperature 
equilibrium states [ 1 1 1 .  But whereas the largest eigenvalue of L,  is non-degenerate 
for any bounded Hamiltonian, this has to be checked for L in each specific model. 
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We will give L for the P U D  model and check the non-degeneracy of its largest eigenvalue 
in Q 4. In any case, the foregoing argument to determine P,(9) r e sa ins  valid for p = W .  

Hence we have to establish the existence of l im,k+x P r ( k )  for p E [ O , ~ O ] .  
We will prove that a sufficient condition for this limit to exist is that the largest 
eigenvalue of the transfer matrix is non-degenerate. We omit the p dependence in the 
notations. 

Lemma 1. Let p ( k )  denote the largest eigenvalue of T ( k )  and let S ( k )  be the 
corresponding eigenprojection. If p (0) is non-degenerate then 

l im  ( T ( k / ( 2 N  + 1 ) ) )  = S ( 0 ) .  
v-r p ( k / ( 2 N + l ) )  

Proof: Decompose T ( k )  in its canonical form: 
5 

T ( k ) =  c A , ( k ) S , ( k ) + D , ( k )  
, = I  

where A , ( k ) ,  i = 1 ,  . . . , s are the eigenvalues of T ( k ) ,  S , ( k )  the corresponding eigen- 
projections and D,( k )  the eigennilpotents, satisfying 

S , ( k ) S , ( k )  = s, ,s ,(k) 

D , ( k ) S , ( k )  = S , ( k ) D , ( k )  = 6 , D , ( k )  

D , ( k ) D , ( k )  = 6,,D,(kI2 

D : ( k )  = 0 for n large enough. 

Furthermore, the A , (  k )  depend analytically on k. Therefore the largest eigenvalue 
A , ( k )  is non-degenerate for k small enough since A , ( O )  is non-degenerate, and hence 
D,(k)=O.  All these results are standard (see, e.g., [ 1 5 ] ) .  Now take k fixed and N 
large enough such that there exists an n < N such that D , ( k ) "  = 0, 1 < is s and 
D l ( k / ( 2 N +  1 ) ) = 0 ,  then 

Since 

for i # 1 ,  the result follows. 

Theorem 2. If the largest eigenvalue of the transfer matrix is non-degenerate, then 

Pp" ( 4 )  = c S(9  - 9 :: )wp Ix)wp(Y) 
'i\ 
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with 

converges properly to the Dirac measure as N -+ oc, i.e. P, ( q )  = 6( q - Q ( p ) ) ,  concen- 
trated in Q ( p )  = w p ( A ) w p ( B ) .  This also holds for p = oc with w,  = limp+,- w,. 

ProoJ: Since T,(O) = AG’L, 0 Lp (where L, = L )  and since by assumption the largest 
eigenvalue of L, and hence of T’(0) is non-degenerate, we obtain from the lemma that 

Since this must be a characteristic function, we find that c = 1 and that p&(O) is purely 
imaginary. We conclude that P p ( q )  has a Dirac distribution concentrated at Q ( p )  = 
-ipb(O) or 

Q ( P ) = l  dqqP,(q)= N-m lim c xy dqqs(q-q~. )wp(x)wp(y)  

= 1in-I c qXNyq3(x)wp(Y) 
N-m xy 

4. Application t o  the PUD model 

In this section, we calculate explicitly Q ( p )  for the model explained in 0 2. Representing 
the function 4(xo,  x l )  as a four-component vector, 

the transfer matrix has the following form: 
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and it is non-degenerate. The corresponding eigenvectors of L, and L; are respectively 
given by 

where U, = 
the conditional expectation 

? A p  - l j - ' .  The equilibrium states w, are completely determined by 

where U =  limp*x U, = 2/(-1 +d). They are the eigenvectors corresponding to the 
largest eigenvalue 1 of L and L* where 

1 0 1 0  

0 1 0 1  

One can easily check that its largest eigenvalue is non-degenerate. Indeed, all elements 
of the fourth power of L are strictly positive. The Perron-Frobenius theorem then 
guarantees that the largest eigenvalue of L4 is non-degenerate and, by the spectral 
mapping theorem, this also holds for L. (This is the way that the non-degeneracy of 
the largest eigenvalue of L, is proven for an  arbitrary bounded Hamiltonian.) So we 
can conclude that P,(q) is a delta distribution for all p including p = m. 

The observables used in the overlap are A(x,, xl) = B ( x , ,  x i )  = .xoxl. This gives for 
(+(A): 

w , ( A )  = c 4p(x,, x1)&3(xo, Xi)X,XI 
\ , j . Y l  

and 

This is the value of the overlap for any p, including p = cc. One can check that Q ( p )  
is a continuous function of p, also at CO. 
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